

Calculation Policy adapted from White Rose Maths HubProgression in Calculations - supported with a rich use of vocabulary and discussion throughout using 'stem sentences'

Calculation policy: Division

Key language: share, group, divide, divided by, half.
Concrete / build it
Pictorial/ draw it
Abstract/ write it/ say it
Sharing using a range of objects. $6 \div 2$

Repeated subtraction using Cuisenaire rods above a ruler. $6 \div 2$

Children to represent repeated subtraction pictorially.

Abstract number line to represent the equal groups that have been subtracted.

Say it: 6 shared into 3 groups is 3 groups of 2
$2 d \div 1 d$ with remainders using lollipop sticks. Cuisenaire rods, above a ruler can also be used.
$13 \div 4$
Use of lollipop sticks to form wholes- squares are made because we are
 dividing by 4.

There are 3 whole squares, with 1 left over.

Children to represent the lollipop sticks pictorially.

There are 3 whole squares, with 1 left over.
$13 \div 4-3$ remainder 1
Children should be encouraged to use their times table facts; they could also represent repeated addition on a number line.

Say it: 3 groups of 4, with 1 left over

Sharing using place value counters.
$42 \div 3=14$
000000 ○○○

10 s	1 s

		$\begin{aligned} & 000000 \\ & 000000 \\ & \hline 000 \end{aligned}$	
10s	15	10s	1s
\bigcirc	0000	\bigcirc	
\bigcirc	$\bigcirc \bigcirc \bigcirc$	\bigcirc	
\bigcirc	- ○○ -	\bigcirc	

Children to represent the place value counters pictorially.

Children to be able to make sense of the place value counters and write calculations to show the process.
$42 \div 3$
$42=30+12$
$30 \div 3=10$
$12 \div 3=4$
$10+4=14$

Say it: 42 is the whole, 30 is a part, 12 is a part. 30 shared into 3 groups is 10,12 shared into 3 groups is 4.42 shared into 3 groups is 14

Short division using place value counters to group. $615 \div 5$

1. Make 615 with place value counters.
2. How many groups of 5 hundreds can you make with 6 hundred counters?
3. Exchange 1 hundred for 10 tens.
4. How many groups of 5 tens can you make with 11 ten counters?
5. Exchange 1 ten for 10 ones.
6. How many groups of 5 ones can you make with 15 ones?

Represent the place value counters pictorially.

Children to the calculation using the short division scaffold.

123 $5 \longdiv { 6 1 5 }$

Say it: 6 hundreds into groups of 5 is 1 hundred, with 1 hundred left over. 1 hundred and 1 ten grouped into 5 is 20 , with 1 ten left over. 1 ten and 5 ones grouped into 5 is 3 .

Long division using place value counters
$2544 \div 12$

1000s	100s	10s	1 s
-Ө	$\ominus^{\circ-0 \odot}$	0000	0000
1000s	100s	10s	1 s
		0000	-லరত

We can't group 2 thousands into groups of 12 so will exchange them.

$$
\begin{array}{lc}
\text { We can group } 24 \text { hundreds } & 02 \\
\text { into groups of } 12 \text { which leaves } & 12 \begin{array}{|c}
25544 \\
\text { with } 1 \text { hundred. }
\end{array} \\
\hline \frac{24}{2} &
\end{array}
$$

After exchanging the hundred, we $1 2 \longdiv { 2 5 4 4 }$
have 14 tens. We can group 12 tens into a group of 12 , which leaves 2 tens.

	0212
After exchanging the 2 tens, we have 24 ones. We can group 24 ones into 2 group of 12 , which leaves no remaind	$1 2 \longdiv { 2 5 4 4 }$
	24
	er.14 12
	24
	24

Conceptual variation; different ways to ask children to solve

 $615 \div 5$| Using the part whole model below, how |
| :--- |
| can you divide 615 by 5 without using |
| short |
| division? |

I have $£ 615$ and share it equally
between 5 bank accounts. How
much will be in each account?
615 pupils need to be put into 5
groups. How many will be in each
group?

